
 ISSN (Online) 2278-1021
 ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 7, July 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4799 429

A Combinatorial Temporal Closed+

High Utility Itemset Mining Algorithm

in Transactional Database

Santhosh.J
1
, Sukanya

2

Assistant Professor, Department of Computer Science, Sree Narayana Guru College, Coimbatore, Tamil Nadu
1

M.Phil. Scholar, Department of Computer Science, Sree Narayana Guru College, Coimbatore, Tamil Nadu
2

Abstract: High utility item set mining from a transactional database helps to discover the items with high utility based

on profit, cost and quantity. Although several significant algorithms have been proposed in recent years, they

experienced the problem of producing a large number of candidate itemsets for high utility itemsets. Such a huge

number of candidate item sets degrades and reduces the mining performance in terms of storage space requirement and

execution time. The situation may become worse when the database contains lots of datasets, long transactions or long

high utility itemsets. The proposal introduces three algorithms which are temporal High utility pattern growth (THUP-

Growth), temporal closed frequent pattern growth (TCFP-Growth) and temporal UP-Growth+, for mining closed high

utility itemsets with a set of effective strategies for pruning candidate item sets rapidly. The information of high utility

itemsets is maintained in a tree-based data structure named closed+ utility pattern tree (TCUP-Tree) such that candidate

itemsets can be generated efficiently with only two scans of database, then that will be segmented into multiple clusters

for fast computation. The proposed algorithms reduce the number of candidates and database scans effectively. This

also outperforms best than the existing algorithms and significantly reduces the runtime and memory and storage

overhead, especially when databases contain lots of high and long transactions.

Keywords: Frequent itemset, high utility itemset, closed and frequent itemset, FP growth, utility mining, data mining.

I. INTRODUCTION

Association rule mining is one of the most important

techniques of data mining which was introduced in [1].

Data mining aims to extract interesting correlations,

frequent patterns, associations or casual structures among

sets of items in the transaction databases or other data

repositories. These rules are mostly used in various areas

such as telecommunication networks, market and risk

management, and inventory control and so on. Association

rule mining is to find out association rules that satisfy the

predefined minimum support and confidence from a given

database. The problem is usually decomposed into two sub

problems. One is to find those itemsets whose occurrences

exceed a predefined threshold in the database; those

itemsets are called frequent or large itemsets. The second

problem is to generate association rules from those large

itemsets with the constraints of minimal confidence.

Suppose one of the large itemsets is Lk, Lk = {I1, I2,.…,

Ik}, association rules with this itemsets are generated in

the following way: the first rule is {I1, I2, … , Ik-1}⇒

{Ik}, by checking the confidence this rule can be

determined as interesting or not. Then other rule are

generated by deleting the last items in the antecedent and

inserting it to the consequent, further the confidences of

the new rules are checked to determine the interestingness

of them. Those processes iterated until the antecedent

becomes empty. Since the second sub problem is quite

straight forward, most of the researches focus on the first

sub problem. The first sub-problem can be further divided

into two sub-problems: candidate large itemsets generation

process and frequent itemsets generation process. We call

those itemsets whose support exceed the support threshold

as large or frequent itemsets, those itemsets that are

expected or have the hope to be large or frequent are

called candidate itemsets. In many cases, the algorithms

generate an extremely large number of association rules,

often in thousands or even millions. Further, the

association rules are sometimes very large. It is nearly

impossible for the end users to comprehend or validate

such large number of complex association rules, thereby

limiting the usefulness of the data mining results. The

proposed strategies to reduce the number of association

rules, such as generating only “interesting” rules,

generating only “non redundant” rules, or generating only

those rules satisfying certain other criteria such as

coverage, leverage, lift or strength. This work reviews the

most well known algorithm for producing association

 ISSN (Online) 2278-1021
 ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 7, July 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4799 430

rules. The review ends with an outlook on tools which

have the potential to deal with long itemsets and

considerably reduce the amount of itemsets returned.

II. ARCHITECTURE DIAGRAM

The following architecture diagram explains the steps and

mechanisms followed in the proposed system. The input

resource is transactional databases which contains market

basket analysis dataset. We applied the algorithms and

mechanisms on the dataset and the derived outputs are

high quality itemset, closed itemset and frequent itemset.

III. PROPOSED SYSTEM

i. Algorithms for Mining Closed + High Utility Itemsets

In this chapter, we introduce three proficient algorithms

named as THUP-Growth (temporal High utility pattern

growth) for finding high profitable itemsets, TCFP-

Growth (temporal closed frequent pattern growth) for

finding closed frequent itemsets and finally the

information of high utility itemsets is maintained in a tree-

based data structure named closed+ utility pattern tree

(TCUP-Tree) such that candidate itemsets can be

generated efficiently with only two scans of database, then

that will be segmented into multiple clusters for fast

computation.

The first step of implementation is to segment the

transactional dataset into n partitions. This can be done by

applying the following formula.

 ∑ (

)

 (1)

From the method 1 transactional database is denoted as d.

the number of segments is denoted as n. for each temporal

threshold t, this performs partition function p(x). After

segmenting the dataset, the high closed utility mining will

be generated for each segment. This act as a ensemble

approach.

The next step of the implementation is to mine closed +

frequent+ utility combination from the transactional

dataset. After successful preprocessing and partitioning the

data will be allocated to the next phase, which is known as

association rule mining. To make the utility pattern mining

easier, we focused on the short rule which contains one

item on each side of the rule in the rule set. Those rules are

easier to understand by the data analyst and more likely to

cause a business person to act and change a sales

procedure. In order to select the most interesting

association rules for finding high utility, closed and

frequent item sets, this uses the iteration level data pattern

analysis. This focuses on two different THUP-support

measures which are as follows

The THUP- support-min measures rely on a minimum cost

function. In addition the occurrence of an item set in a

given transaction is weighted by the weight of its high

utility and interesting item.

Ex: - X-120

Y-30

Z-26

The THUP-support-min measure, which relies on a

maximum cost function in addition the occurrence of an

item set in a given transaction, is weighted by the number

of unit in every transaction of the most interesting item. In

the process of dealing optimization problems in market

analysis, minimum and maximum are the largely used cost

functions. So they are considered as suitable for driving

the selection of a worthwhile subset of utility weighted

data correlations. There are some problems have been

addressed the problems are listed below.

A. THUP and Minimal THUP mining driven by a

minimum THUP-support-min threshold, and

TABLE 1 sample transactional table

 ISSN (Online) 2278-1021
 ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 7, July 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4799 431

The first task which is the THUP support min threshold

requires discovering THUPs and maximal THUPs

(MTUIs) which include the item(s) with the most local

interest and high utility within each transaction.

THUP Utility Item –support-max

{c} 172 (maximum)

{a, b} 128 (maximum)

{a, c} 143(maximum)

Table: 2 high utility items, item sets with Minimum

threshold >20

Table 2 reports the THUPs mined from Table 1 by

enforcing a minimum THUP-support-min threshold equal

or greater than 20 and their corresponding THUP-support

minimum values. For instance {a,b} covers the

transactions with tids 1, 2, 3, and 4 with a minimal weight

0 (associated with a in tids 1 and 2 and b in tids 3 and 4),

while it covers the transactions with tids 5 and 6 with

maximal weights 86 and 71, respectively.

Hence, its THUP-support-min value is 128 frequent, based

on this closed and high utility itemset can be found from

dataset THUPs. in Table 2 represent sets of items which

contain at least one high utility purchased or highly

purchased at each transaction.

As an extreme case, {a,c,d} has TUIsupport- maximum

utility because at every sampled point of time at least one

between a, b, or d (not necessarily the same at each

instant) is null, possibly due to system temporal changes.

From the table 2 {b} is high utility item with 385 and

{a,c,d=243 }is high utility itemset.

 Considering minimal THUPs allows the expert to focus

the attention on the highly purchased item sets that contain

highly transaction/null transaction and, thus, reduces the

unfairness due to the possible insertion of highly weighted

items in the extracted patterns. In Table 2 THUPs are

partitioned between minimal and not in the transaction, as

indicated next to each itemset THUP-support-min value

(minimal/not minimal).

The next task requires discovering TCUPs and TCFP

which include item(s) having maximal local interest within

each transaction by exploiting the TCFP -support-min

measure.

Table 3 reports the THUPs mined from Table 1 by

enforcing a minimum THUP-support-min threshold equal

to 120. They may represent sets of itemsets which contain

only high utility items at each temporally splitted data

instant is specified in column 1 and 2. This helps to

identify the frequent high utility combination of items

from the above analysis. The third column describes the

maximum frequent and high utility closed item. Finally

{d} has the maximum in all three.

Items THUP-

support-Min

TCFP (maximum qty)

{a} 286 {a,d} 200

{b} 285 {b,d} 171

{c} 172 {c,d} 143

{d} 427 {d} frequency=6

Utility=427

Table 3: Minimum THUP-support-min threshold =120

ii. THUP – Growth Tree Algorithm:

 Pruning:

After the tree construction based on temporal basis, the

system performs pruning process. This is done because of

the following reasons.

 Pruning may be able to build a perfect decision tree

which perfectly reflects the high utility and most closed

item sets from the transactional data.

 In some cases, the tree may over fitting i.e. not be

generally applicable and updatable.

 This helps to simplifying the tree based results and

hence simplifying a transactional decision tree

Input: filtered transaction from temporal scheme

Output: Frequent item set

Description: THUP -Growth: Allows frequent itemset

discovery without candidate itemset generation. Like FP

growth algorithm.

THUP allows identifying the utility item set discovery

without candidate itemset generation

Steps:

(i) Build a compact data structure called the THUP

tree built using 2 passes over the data-set.

(ii) Extracts frequent itemsets directly from the

THUP -tree traversal through the Tree.

 ISSN (Online) 2278-1021
 ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 7, July 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4799 432

The pruning process has done by applying prune rules

over the tree data. The pruning process will be carried out

by using the following algorithm.

THUP support mining algorithm

Input: Weighted transactional dataset (td)

 Minimum utility support threshold (St)

 Minimum Temporal threshold (T)

Step 1: read all transaction data (td) from the shopping cart

Step 2: get the temporal threshold (T) and segment the td.

T(td)=∑(I to n) {Trans i(split(T))}

Step3: scan transactional database Ttd and count THUP

support of each item

Step 4: count item THUP support (td)

Step 5: create the initial THUP tree from the td.

Step 6: for each transaction ti in td, Insert ti in Tree

Step 7: store tree, St, null in a tree (which satisfies St)

Step 8: return the output from step 7.

a. Prune rules:

Pruning is the common frame for avoiding the

problem of over fitting noisy data which is also known as

unwanted repeated data. The basic idea is to incorporate a

bias towards simpler theories in order to avoid complex

rules with low coverage that contain irrelevant literals that

have only been added to exclude noisy examples.

Algorithm: THUPMining

Description: The THUPMining algorithm takes three

parameters one is the tree from the THUP support

algorithm. Another one is minimum THUP support

threshold. And finally perform prefix process.

Input: a FP tree (Htree)

Minimum THUP support threshold (St)

The set of items with patterns (prefix)

Output: F values which is a set of THUP extending prefix

Steps:

1. Initially assign 0 for F

i. F=0

2. For each item I in the header tree table HTree.

3. I=prefix U{i}-generate a new itemset I by joining

prefix and I with THUP support set to the THUP

support item i

4. If I is infrequent

i. Store I.

5. End if

6. If THUP-support(I) <= St then

i. F=FU{I}

7. End if

8. Conditional_pattern (P)=generate(Htree, ,I)

9. HTreeI=createFP-tree(Conditional_pattern)

10. Perform pruning

11. Prune=identify(Htree I, St)

12. Htee=remove(HtreeI, prune)

13. If HTreeI #0 then

i. F=F U THUPMining(HTree, St, I)

14. End

15. Return the output F.

The below fig 1: shows the execution time performance of

the proposed system and it proves that it outperforms the

earlier systems.

Fig 1 Execution comparison chart

IV. CONCLUSION

The system proposed temporal high utility data

set and low utility data set in the high dimensional

transactional dataset. Temporal High utility item set

mining from a transactional database helps to discover the

items with high utility based on different parameter have

been proposed. The situation may become worse when the

database contains lots of datasets, long transactions or long

high utility item sets. The proposal introduced two

algorithms which are temporal utility pattern growth

(TUP-Growth) and temporal UP-Growth+, for mining

high utility item sets with a set of effective strategies for

pruning candidate item sets rapidly. The information of

0

20

40

60

80

100

120

1 2 3 4 5E
x
e
c
u

ti
o

n
 t

im
e
 i

n
 (

m
.s

se
c
)

Minimum Utility threshold %

Execution Time comparison

UpGrowth

CHUD+DA

HU

CHUD

THUP

+TCUP

 ISSN (Online) 2278-1021
 ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 7, July 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4799 433

high utility itemsets is maintained in a tree-based data

structure named utility pattern tree (TUP-Tree) such that

candidate itemsets can be generated efficiently with only

two scans of database, then that will be segmented into

multiple clusters for fast computation. The proposed

algorithms reduce the number of candidates and database

scans effectively. The experiments’ and results shows the

proposed system performs better than existing system.

REFERENCES

[1] Tseng, Vincent S., et al. "Efficient algorithms for mining high utility

itemsets from transactional databases." Knowledge and Data

Engineering, IEEE Transactions on 25.8 (2013): 1772-1786.
[2] Liu, Mengchi, and Junfeng Qu. "Mining high utility itemsets without

candidate generation." Proceedings of the 21st ACM international

conference on Information and knowledge management. ACM,
2012.

[3] Wu, Cheng Wei, et al. "Efficient mining of a concise and lossless

representation of high utility itemsets." Data Mining (ICDM), 2011
IEEE 11th International Conference on. IEEE, 2011.

[4] Gouda, Karam, and Mohammed Zaki. "Efficiently mining maximal

frequent itemsets." Data Mining, 2001. ICDM 2001, Proceedings
IEEE International Conference on. IEEE, 2001.

[5] Agrawal, Rakesh, and Ramakrishnan Srikant. "Fast algorithms for

mining association rules." Proc. 20th int. conf. very large data
bases, VLDB. Vol. 1215. 1994.

[6] Boulicaut, Jean-François, Artur Bykowski, and Christophe Rigotti.

"Free-sets: a condensed representation of boolean data for the
approximation of frequency queries." Data Mining and Knowledge

Discovery 7.1 (2003): 5-22.

[7] Calders, Toon, and Bart Goethals. "Mining all non-derivable frequent
itemsets."Principles of Data Mining and Knowledge Discovery.

Springer Berlin Heidelberg, 2002. 74-86.

[8] Liu, Mengchi, and Junfeng Qu. "Mining high utility itemsets without
candidate generation." Proceedings of the 21st ACM international

conference on Information and knowledge management. ACM,

2012.
[9] Chuang, Kun-Ta, Jiun-Long Huang, and Ming-Syan Chen. "Mining

top-k frequent patterns in the presence of the memory

constraint." The VLDB Journal 17.5 (2008): 1321-1344.

