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Abstract: High utility item set mining from a transactional database helps to discover the items with high utility based 

on profit, cost and quantity. Although several significant algorithms have been proposed in recent years, they 

experienced the problem of producing a large number of candidate itemsets for high utility itemsets. Such a huge 

number of candidate item sets degrades and reduces the mining performance in terms of storage space requirement and 

execution time. The situation may become worse when the database contains lots of datasets, long transactions or long 

high utility itemsets. The proposal introduces three algorithms which are temporal High utility pattern growth (THUP-

Growth), temporal closed frequent pattern growth (TCFP-Growth) and temporal UP-Growth+, for mining closed high 

utility itemsets with a set of effective strategies for pruning candidate item sets rapidly. The information of high utility 

itemsets is maintained in a tree-based data structure named closed+ utility pattern tree (TCUP-Tree) such that candidate 

itemsets can be generated efficiently with only two scans of database, then that will be segmented into multiple clusters 

for fast computation. The proposed algorithms reduce the number of candidates and database scans effectively. This 

also outperforms best than the existing algorithms and significantly reduces the runtime and memory and storage 

overhead, especially when databases contain lots of high and long transactions. 

Keywords: Frequent itemset, high utility itemset, closed and frequent itemset, FP growth, utility mining, data mining.  

I. INTRODUCTION 

Association rule mining is one of the most important 

techniques of data mining which was introduced in [1]. 

Data mining aims to extract interesting correlations, 

frequent patterns, associations or casual structures among 

sets of items in the transaction databases or other data 

repositories. These rules are mostly used in various areas 

such as telecommunication networks, market and risk 

management, and inventory control and so on. Association 

rule mining is to find out association rules that satisfy the 

predefined minimum support and confidence from a given 

database. The problem is usually decomposed into two sub 

problems. One is to find those itemsets whose occurrences 

exceed a predefined threshold in the database; those 

itemsets are called frequent or large itemsets. The second 

problem is to generate association rules from those large 

itemsets with the constraints of minimal confidence. 

Suppose one of the large itemsets is Lk, Lk = {I1, I2,.…, 

Ik}, association rules with this itemsets are generated in 

the following way: the first rule is {I1, I2, … , Ik-1}⇒ 

{Ik}, by checking the confidence this rule can be 

determined as interesting or not. Then other rule are 

generated by deleting the last items in the antecedent and 

inserting it to the consequent, further the confidences of 

the new rules are checked to determine the interestingness 

of them. Those processes iterated until the antecedent 

becomes empty. Since the second sub problem is quite 

straight forward, most of the researches focus on the first 

sub problem. The first sub-problem can be further divided 

into two sub-problems: candidate large itemsets generation 

process and frequent itemsets generation process. We call 

those itemsets whose support exceed the support threshold 

as large or frequent itemsets, those itemsets that are 

expected or have the hope to be large or frequent are 

called candidate itemsets. In many cases, the algorithms 

generate an extremely large number of association rules, 

often in thousands or even millions. Further, the 

association rules are sometimes very large. It is nearly 

impossible for the end users to comprehend or validate 

such large number of complex association rules, thereby 

limiting the usefulness of the data mining results. The 

proposed strategies  to reduce the number of association 

rules, such as generating only “interesting” rules, 

generating only “non redundant” rules, or generating only 

those rules satisfying certain other criteria such as 

coverage, leverage, lift or strength. This work reviews the 

most well known algorithm for producing association 
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rules. The review ends with an outlook on tools which 

have the potential to deal with long itemsets and 

considerably reduce the amount of itemsets returned.  

II. ARCHITECTURE DIAGRAM 

The following architecture diagram explains the steps and 

mechanisms followed in the proposed system. The input 

resource is transactional databases which contains market 

basket analysis dataset. We applied the algorithms and 

mechanisms on the dataset and the derived outputs are 

high quality itemset, closed itemset and frequent itemset. 

 

III. PROPOSED SYSTEM 

i. Algorithms for Mining Closed + High Utility Itemsets 

In this chapter, we introduce three proficient algorithms 

named as THUP-Growth (temporal High utility pattern 

growth) for finding high profitable itemsets, TCFP-

Growth (temporal closed frequent pattern growth) for 

finding closed frequent itemsets and finally the 

information of high utility itemsets is maintained in a tree-

based data structure named closed+ utility pattern tree 

(TCUP-Tree) such that candidate itemsets can be 

generated efficiently with only two scans of database, then 

that will be segmented into multiple clusters for fast 

computation. 

The first step of implementation is to segment the 

transactional dataset into n partitions. This can be done by 

applying the following formula. 

     ∑ ( 
 
)    

 

   
             (1) 

From the method 1 transactional database is denoted as d. 

the number of segments is denoted as n. for each temporal 

threshold t, this performs partition function p(x). After 

segmenting the dataset, the high closed utility mining will 

be generated for each segment. This act as a ensemble 

approach. 

The next step of the implementation is to mine closed + 

frequent+ utility combination from the transactional 

dataset. After successful preprocessing and partitioning the 

data will be allocated to the next phase, which is known as 

association rule mining. To make the utility pattern mining 

easier, we focused on the short rule which contains one 

item on each side of the rule in the rule set. Those rules are 

easier to understand by the data analyst and more likely to 

cause a business person to act and change a sales 

procedure. In order to select the most interesting 

association rules for finding high utility, closed and 

frequent item sets, this uses the iteration level data pattern 

analysis. This focuses on two different THUP-support 

measures which are as follows 

The THUP- support-min measures rely on a minimum cost 

function. In addition the occurrence of an item set in a 

given transaction is weighted by the weight of its high 

utility and interesting item. 

Ex: -  X-120 

Y-30 

Z-26 

The THUP-support-min measure, which relies on a 

maximum cost function in addition the occurrence of an 

item set in a given transaction, is weighted by the number 

of unit in every transaction of the most interesting item. In 

the process of dealing optimization problems in market 

analysis, minimum and maximum are the largely used cost 

functions. So they are considered as suitable for driving 

the selection of a worthwhile subset of utility weighted 

data correlations. There are some problems have been 

addressed the problems are listed below. 

A. THUP and Minimal THUP mining driven by a 

minimum THUP-support-min threshold, and 

 

TABLE 1 sample transactional table 
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The first task which is the THUP support min threshold 

requires discovering THUPs and maximal THUPs 

(MTUIs) which include the item(s) with the most local 

interest and high utility within each transaction.  

THUP Utility Item –support-max 

{c} 172 (maximum) 

{a, b} 128 (maximum) 

{a, c} 143(maximum) 

Table: 2 high utility items, item sets with Minimum 

threshold >20 

Table 2 reports the THUPs mined from Table 1 by 

enforcing a minimum THUP-support-min threshold equal 

or greater than 20 and their corresponding THUP-support 

minimum values. For instance {a,b} covers the 

transactions with tids 1, 2, 3, and 4 with a minimal weight 

0 (associated with a in tids 1 and 2 and b in tids 3 and 4), 

while it covers the transactions with tids 5 and 6 with 

maximal weights 86 and 71, respectively.  

Hence, its THUP-support-min value is 128 frequent, based 

on this closed and high utility itemset can be found from 

dataset THUPs. in Table 2 represent sets of items which 

contain at least one high utility purchased or highly 

purchased at each transaction.  

As an extreme case, {a,c,d} has TUIsupport- maximum 

utility  because at every sampled point of time at least one 

between a, b, or d (not necessarily the same at each 

instant) is null, possibly due to system temporal changes. 

From the table 2 {b} is high utility item with 385 and 

{a,c,d=243 }is high utility itemset. 

 Considering minimal THUPs allows the expert to focus 

the attention on the highly purchased item sets that contain 

highly transaction/null transaction and, thus, reduces the 

unfairness due to the possible insertion of highly weighted 

items in the extracted patterns. In Table 2 THUPs are 

partitioned between minimal and not in the transaction, as 

indicated next to each itemset THUP-support-min value 

(minimal/not minimal).  

The next task requires discovering TCUPs and TCFP 

which include item(s) having maximal local interest within 

each transaction by exploiting the TCFP -support-min 

measure. 

Table 3 reports the THUPs mined from Table 1 by 

enforcing a minimum THUP-support-min threshold equal 

to 120. They may represent sets of itemsets which contain 

only high utility items at each temporally splitted data 

instant is specified in column 1 and 2. This helps to 

identify the frequent high utility combination of items 

from the above analysis. The third column describes the 

maximum frequent and high utility closed item. Finally 

{d} has the maximum in all three. 

Items  THUP-

support-Min 

TCFP (maximum qty) 

{a} 286 {a,d} 200 

{b} 285 {b,d} 171 

{c} 172 {c,d} 143 

{d} 427 {d} frequency=6 

Utility=427 

 

Table 3: Minimum THUP-support-min threshold =120 

ii. THUP – Growth Tree Algorithm: 

 

 

 

 

 

 Pruning: 

 

 

 

 

After the tree construction based on temporal basis, the 

system performs pruning process. This is done because of 

the following reasons.  

 Pruning may be able to build a perfect decision tree 

which perfectly reflects the high utility and most closed 

item sets from the transactional data. 

 In some cases, the tree may over fitting i.e. not be 

generally applicable and updatable. 

  This helps to simplifying the tree based results and 

hence simplifying a transactional decision tree 

Input: filtered transaction from temporal scheme 

Output: Frequent item set  

Description:  THUP -Growth: Allows frequent itemset 

discovery without candidate itemset generation.  Like FP 

growth algorithm. 

THUP allows identifying the utility item set discovery 

without candidate itemset generation 

Steps: 

(i) Build a compact data structure called the THUP 

tree built using 2 passes over the data-set. 

 

(ii) Extracts frequent itemsets directly from the 

THUP -tree traversal through the Tree. 
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The pruning process has done by applying prune rules 

over the tree data. The pruning process will be carried out 

by using the following algorithm. 

THUP support mining algorithm 

Input: Weighted transactional dataset (td) 

 Minimum utility support threshold (St) 

 Minimum Temporal threshold (T) 

Step 1: read all transaction data (td) from the shopping cart 

Step 2: get the temporal threshold (T) and segment the td. 

T(td)=∑(I to n) {Trans i(split(T))} 

Step3: scan transactional database Ttd and count THUP 

support of each item 

Step 4: count item THUP support (td) 

Step 5: create the initial THUP tree from the td. 

Step 6: for each transaction ti in td, Insert ti in Tree 

Step 7: store tree, St, null in a tree (which satisfies St) 

Step 8: return the output from step 7.  

a. Prune rules: 

Pruning is the common frame for avoiding the 

problem of over fitting noisy data which is also known as 

unwanted repeated data. The basic idea is to incorporate a 

bias towards simpler theories in order to avoid complex 

rules with low coverage that contain irrelevant literals that 

have only been added to exclude noisy examples. 

Algorithm: THUPMining  

Description: The THUPMining algorithm takes three 

parameters one is the tree from the THUP support 

algorithm. Another one is minimum THUP support 

threshold. And finally perform prefix process. 

Input: a FP tree (Htree) 

Minimum THUP support threshold (St) 

The set of items with patterns (prefix) 

Output: F values which is a set of THUP extending prefix 

Steps: 

1. Initially assign 0 for F  

i. F=0 

2. For each item I in the header tree table HTree. 

3. I=prefix U{i}-generate a new itemset I by joining 

prefix and I with THUP support set to the THUP 

support item i 

4. If I is infrequent 

i. Store I. 

5. End if 

6. If THUP-support(I) <= St then 

i. F=FU{I} 

7. End if 

8. Conditional_pattern (P)=generate(Htree, ,I) 

9. HTreeI=createFP-tree(Conditional_pattern) 

10. Perform pruning 

11. Prune=identify(Htree I, St) 

12. Htee=remove(HtreeI, prune) 

13. If HTreeI #0 then 

i. F=F U THUPMining(HTree, St, I) 

14. End 

15. Return the output F. 

The below fig 1: shows the execution time performance of 

the proposed system and it proves that it outperforms the 

earlier systems.  

 

Fig 1 Execution comparison chart 

IV. CONCLUSION 

The system proposed temporal high utility data 

set and low utility data set in the high dimensional 

transactional dataset. Temporal High utility item set 

mining from a transactional database helps to discover the 

items with high utility based on different parameter have 

been proposed. The situation may become worse when the 

database contains lots of datasets, long transactions or long 

high utility item sets. The proposal introduced two 

algorithms which are temporal utility pattern growth 

(TUP-Growth) and temporal UP-Growth+, for mining 

high utility item sets with a set of effective strategies for 

pruning candidate item sets rapidly. The information of 
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high utility itemsets is maintained in a tree-based data 

structure named utility pattern tree (TUP-Tree) such that 

candidate itemsets can be generated efficiently with only 

two scans of database, then that will be segmented into 

multiple clusters for fast computation. The proposed 

algorithms reduce the number of candidates and database 

scans effectively. The experiments’ and results shows the 

proposed system performs better than existing system. 
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